

 			

 	Content Strategy
	Digital Marketing
	Writing
	All Articles

 	Content Strategy
	Digital Marketing
	Writing
	All Articles

	

 Top

 ArticleCity.comArticle Categories iTextSharp HTML to PDF Alternative

	
				
				
		
			
				
					
	
				
			
									
						Article Categories					

								
	iTextSharp HTML to PDF Alternative
				
					

 Jun 04, 2020

 by Article City

	0

 0 Comments

				

				
Photo by Blake Connally

Originally Posted On: https://ironpdf.com/docs/questions/itextsharp/

IronPDF and iText 7 (formerly known as iTextSharp) both provide the ability to create, edit and print PDF files in .NET and .NET Core.

Which C# PDF library is best suited for your project? You can decide, as this article compares what each product can do and how they do it using the most common functions of each.

Code Examples

	IronPDF URL to PDF
	iText URL to PDF
	IronPDF HTML to PDF
	iText HTML to PDF
	IronPDF ASPX to PDF
	iText ASPX to PDF
	IronPDF XML to PDF
	iText XML to PDF
	IronPDF Create Chart
	iText Create Chart

IronPDF URL to PDF

	private void ExistingWebURL()
	{
	// Create a PDF from any existing web page
	var Renderer = new IronPdf.HtmlToPdf();
	var PDF = Renderer.RenderUrlAsPdf(“https://en.wikipedia.org/wiki/Portable_Document_Format”);
	

	// Create a PDF from an existing HTML
	Renderer.PrintOptions.MarginTop = 50; //millimetres
	Renderer.PrintOptions.MarginBottom = 50;
	Renderer.PrintOptions.CssMediaType = PdfPrintOptions.PdfCssMediaType.Print;
	Renderer.PrintOptions.Header = new SimpleHeaderFooter()
	{
	CenterText = “{pdf-title}”,
	DrawDividerLine = true,
	FontSize = 16
	};
	Renderer.PrintOptions.Footer = new SimpleHeaderFooter()
	{
	LeftText = “{date} {time}”,
	RightText = “Page {page} of {total-pages}”,
	DrawDividerLine = true,
	FontSize = 14
	};
	

	Renderer.PrintOptions.CssMediaType = PdfPrintOptions.PdfCssMediaType.Print;
	

	Renderer.PrintOptions.EnableJavaScript = true;
	Renderer.PrintOptions.RenderDelay = 500; //milliseconds
	

	PDF.SaveAs(“wikipedia.pdf”);
	}

Jump to Article Try IronPDF free for development

Compare IronPDF to iTextSharp C#

	Get the IronPDF C# PDF Library
	Compare IronPDF and iText 7 Features
	Compare code for URL to PDF
	Compare code for HTML string to PDF
	Compare licensing, free software options, and more

Overview

iTextSharp 7 vs. IronPDF .NET Library

iTextSharp has been around for a very long time, so that should count in their favor a bit. But, in my humble opinion, it seems as if they are starting to lag behind. The libraries are based on Java, which is good, but .NET has been in existence for just about 20 years, and the .NET Framework keeps growing and expanding, opening up many possibilities – much more than what Java can provide easily. This is where IronPDF jumps forward as a great tool to manipulate PDF documents from any web framework. You can download IronPDF as an iTextSharp Alternative.

The rendering options of iText and IronPDF makes a huge difference. Not only with the speed and efficacy of the underlying PDF library, but also in the code when certain sections must be manipulated. Here, IronPDF wins again. Why? Let’s compare each code segment to add headers and footers to a PDF document:

Add Headers and Footers to PDFs in C# with IronPDF

	Renderer.PrintOptions.Header = new SimpleHeaderFooter()
	{
	CenterText = “{pdf-title}”,
	DrawDividerLine = true,
	FontSize = 16
	};
	Renderer.PrintOptions.Footer = new SimpleHeaderFooter()
	{
	LeftText = “{date} {time}”,
	RightText = “Page {page} of {total-pages}”,
	DrawDividerLine = true,
	FontSize = 14
	};

iTextSharp Add PDF Headers & Footers

	Paragraph header = new Paragraph(“HEADER”)
	.SetTextAlignment(TextAlignment.CENTER)
	.SetFontSize(16);
	document.Add(header);
	

	for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
	{
	Rectangle pageSize = pdf.GetPage(i).GetPageSize();
	float x = pageSize.GetWidth() / 2;
	float y = pageSize.GetTop() – 20;
	document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
	}
	

	document.SetTopMargin(50);
	document.SetBottomMargin(50);

By quickly glancing at the code, you can see that IronPDF is easier, quicker, and looks more polished. iText doesn’t possess the inherent capability to add a header or footer onto a PDF document through the library itself, and does not allow for straight-forward PDF manipulation.

iTextSharp.dll uses a primarily programmatic model to render PDFs. When using iTextSharp PDF library, each piece of pdf text, graphic, table or line is “plotted” or drawn onto a PDF. This model allows precision, but many developers complain that it is time consuming to generate PDFs – and that it is very hard to closely match existing design styles or web assets. When viewing iTextSharp documentation, we see a port of a Java Library called “iText”. In keeping, the methodology and programatic interface has a distinct Java flavor.

In contrast, Iron PDF uses an embedded, full Chromium based web browser renderer to convert HTML to PDF, including C# code examples, allowing developers to generate PDFs from HTML, images and CSS. This allows developers to work closely with existing web assets and also work in parallel with designers during a project. Although iText includes iTextSharp HTML to PDF functionality for C# .Net, developers report that it is not as far developed or dominant within the iTextSharp library.

The licensing options can also be a deal-breaker. iTextSharp is Open Source under the AGPL license agreement. This means that anyone who uses any part of an application using iTextSharp (privately or publicly) must get the application’s full source code. IronPDF is free for development, and can then be licensed for commercial deployment.

Read on for more comparative details on the different functionalities of these two libraries. I will talk about the pros and cons of each library’s methodology, and show the different ways both iText and IronPDF achieve the following goals:

	Create a PDF from an Existing URL
	Create a PDF Document from an HTML input string
	Convert ASPX Pages to PDF
	Convert XML to PDF
	Live Data (chart)

IronPDF vs. iTextSharp

 Convert HTML to PDF in C# using IronPDF Convert HTML to PDF in C# using iTextSharp Convert HTML to PDF using IronPDF in MVC Convert HTML to PDF using iText7 in MVC Export to PDF using IronPDF in C# Export to PDF using iTextSharp in C# CSS Responsiveness CSS Responsiveness Rendering by using an embedded Chrome based web browser Programmatic drawing model IronPDF has explicit licenses for commercial or private usage AGLP strict open source licensing Built in .NET natively Based on a Java library

Key Differences

Generate PDF from HTML using IronPDF

IronPDF enables .NET and .NET Core developers to generate, merge, split, edit, and extract pdf content easily in C#, F#, and VB.Net for .NET Core and .NET Framework, as well as create PDFs from HTML, ASPX, CSS, JS, and image files.

It makes use of an embedded, full Chromium based web browser renderer to convert HTML to PDF. This allows developers to generate PDFs from HTML, images, and CSS and to work closely with existing web assets and also work in parallel with designers during a project.

IronPDF really focuses on developer productivity. The library simplifies many common complex PDF code tasks into convenient C# methods to extract text and images, sign PDFS, edit PDFS with new HTML and more, without the developer needing to study the PDF document standard to understand how to achieve their best result.

1. IronPDF Features

	Generating PDF documents from HTML, images and ASPX files
	Reading PDF text
	Extracting data and images from PDFs
	Merging PDF documents
	Splitting PDFs
	Manipulating PDFs

iTextSharp HTML to PDF Conversion

The iTextSharp.dll uses a primarily programmatic model to render PDFs, and it has advanced PDF manipulation APIs that are powerful and follow the PDF standard closely.

2. iTextSharp Documentation Features

	AGLP strict open source licensing
	Programmatic drawing model
	Edit and Read PDFs
	Solid functionality for PDF manipulation
	Based on a Java library

Let’s compare by creating an example project utilizing both libraries and let the code do the talking!

Example Project

Create an ASP.NET Project

Make use of the following steps to create an ASP.NET website:

	Open Visual Studio
	Click File New Project
	Select Web under Visual C# in the Project type listbox
	Select ASP.NET Web Application

Figure 1 – New Project

	Click OK
	On the next screen, select Web Forms as shown in Figure 2 underneath

Figure 2 – Web Forms

	Click OK

Now we have something to work with. Let’s Install IronPDF.

Get Started

3. IronPDF C# Library Quick Installation

In order to make use of IronPDF, you first need to install it (free). There are two options:

	NuGet
	Download the library

Let’s have a closer look.

Download DLL

Manually install into your project

or

Install with NuGet

Install-Package IronPdf nuget.org/packages/IronPdf/

Install using NuGet

There are three ways to install the IronPDF NuGet package:

	Visual Studio
	Developer Command Prompt
	Download the NuGet Package directly

Let’s do them one-by-one.

Visual Studio

Visual Studio provides the NuGet Package Manager for you to install NuGet packages in your projects. You can access it via the Project Menu, or by right clicking your project in the Solution Explorer. Both these options are shown below in Figures 3 and 4

Figure 3 – Project menu

Figure 4 – Right click Solution Explorer

After you have clicked Manage NuGet Packages from either option, Browse for the IronPDF package and install it as shown in Figure 5.

Figure 5 – Install IronPDF NuGet Package

Developer Command Prompt

The following steps opens the Developer Command Prompt and installs the IronPDF NuGet package

	Search for your Developer Command Prompt – it is usually under your Visual Studio folder
	Type in the following command: PM > Install-Package IronPdf
	Press Enter
	The package will be installed
	Reload your Visual Studio project

Download the NuGet Package directly

In order to download the NuGet package:

	Navigate to https://www.nuget.org/packages/IronPdf/
	Click on Download Package
	After the package has downloaded, double click it
	Reload your Visual Studio project

Download the .DLL Library

The second way to install IronPDF is by direct download.

Figure 6 – Download IronPDF library

Reference the Library in your project by using the next steps:

	Right click the Solution in the Solution Explorer
	Select References
	Browse for the IronPDF.dll library
	Click OK

Now that you’re set up, we can start playing with the awesome features in the IronPDF library after the setup for iTextSharp.

Install iTextSharp by using NuGet

There are three ways to install the iTextSharp NuGet package, they are:

	Visual Studio
	Developer Command Prompt
	Download the NuGet Package directly

Let’s do them one-by-one.

For Visual Studio, search for iText and install the relevant packages, as shown next.

Figure 7 – iText

Or, in the Developer Command Prompt (as shown previously, enter the following command)

	PM > Install-Package itext7

Or, download it directly from their website: https://itextpdf.com/en/products/itext-7

Now that you have created the necessary projects, let’s compare these two libraries in code.

Compare the Code

4. Create a PDF from an Existing URL

The following code downloads a webpage and converts it to a PDF document. I have included page Header and Footer options as well.

IronPDF Website to PDF

The following code is using IronPDF to create a PDF document directly from a website address. Custom Headers and Footers are also included.

	private void ExistingWebURL()
	{
	// Create a PDF from any existing web page
	var Renderer = new IronPdf.HtmlToPdf();
	var PDF = Renderer.RenderUrlAsPdf(“https://en.wikipedia.org/wiki/Portable_Document_Format”);
	

	// Create a PDF from an existing HTML
	Renderer.PrintOptions.MarginTop = 50; //millimetres
	Renderer.PrintOptions.MarginBottom = 50;
	Renderer.PrintOptions.CssMediaType = PdfPrintOptions.PdfCssMediaType.Print;
	Renderer.PrintOptions.Header = new SimpleHeaderFooter()
	{
	CenterText = “{pdf-title}”,
	DrawDividerLine = true,
	FontSize = 16
	};
	Renderer.PrintOptions.Footer = new SimpleHeaderFooter()
	{
	LeftText = “{date} {time}”,
	RightText = “Page {page} of {total-pages}”,
	DrawDividerLine = true,
	FontSize = 14
	};
	

	Renderer.PrintOptions.CssMediaType = PdfPrintOptions.PdfCssMediaType.Print;
	

	Renderer.PrintOptions.EnableJavaScript = true;
	Renderer.PrintOptions.RenderDelay = 500; //milliseconds
	

	PDF.SaveAs(“wikipedia.pdf”);
	}

iText7 URL to PDF

The following code uses iText7 to create a PDF document directly from a website address and add headers and footers.

	private void ExistingWebURL()
	{
	//Initialize PDF writer
	PdfWriter writer = new PdfWriter(“wikipedia.pdf”);
	//Initialize PDF document
	PdfDocument pdf = new PdfDocument(writer);
	

	ConverterProperties properties = new ConverterProperties();
	properties.SetBaseUri(“https://en.wikipedia.org/wiki/Portable_Document_Format”);
	

	Document document = HtmlConverter.ConvertToDocument(new FileStream(“Test_iText7_1.pdf”, FileMode.Open), pdf, properties);
	

	Paragraph header = new Paragraph(“HEADER”)
	.SetTextAlignment(TextAlignment.CENTER)
	.SetFontSize(16);
	document.Add(header);
	

	for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
	{
	Rectangle pageSize = pdf.GetPage(i).GetPageSize();
	float x = pageSize.GetWidth() / 2;
	float y = pageSize.GetTop() – 20;
	document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
	}
	

	document.SetTopMargin(50);
	document.SetBottomMargin(50);
	

	document.Close();
	}

Code Comparison

With iText, it took a bit longer in code to convert the document at the given URL to PDF. Two lines of code are needed:

	MemoryStream wiki = GetStreamFromUrl(“https://en.wikipedia.org/wiki/Tiger”);
	

	HtmlConverter.ConvertToPdf(wiki, new FileStream(“wikipedia.pdf”,FileMode.OpenOrCreate));

A MemoryStream object as well as a FileStream object have to be created with set properties. I personally felt it a bit cumbersome.

Let’s have a look at IronPDF.

IronPDF needed three lines of code (if you include the SaveAs method at the bottom of the code segment as well), but otherwise just two lines were needed:

	var Renderer = new IronPdf.HtmlToPdf();
	var PDF = Renderer.RenderUrlAsPdf(“https://en.wikipedia.org/wiki/Portable_Document_Format”);

Quick and to the point. No need for a FileStream or an additional .NET object, as all the functionality seems to be built-in to the RenderUrlAsPdf method.

Output Comparison

I am including an Output comparison now, as this should apply to all the following exercises that we’ll do during this tutorial.

With this code segment we have transformed the Tiger Wikipedia webpage to PDF with both libraries.

iTextSharp 7 File Output

The file that was output by using iText’s library has 49 pages. It didn’t render JavaScript nor CSS (as far as I can tell). The resulting output is shown below:

Figure 8 – iText Tiger Wiki page

IronPDF File Output

The file that was output by using IronPDF’s library has 12 pages. It rendered JavaScript and CSS quite well. The resulting output is shown below:

Figure 9 – IronPDF Tiger Wiki Page

A picture tells a thousand words…

5. Generate PDF from HTML Input String

The next code creates a PDF document and prints an HTML string inside it.

IronPDF Document from HTML

The following code makes use of IronPDF to generate a PDF containing HTML input.

	private void HTMLString()
	{
	// Render any HTML fragment or document to HTML
	var Renderer = new IronPdf.HtmlToPdf();
	var PDF = Renderer.RenderHtmlAsPdf(“<h1>Hello IronPdf</h1>”);
	

	Renderer.PrintOptions.Footer = new HtmlHeaderFooter() { HtmlFragment = “<div style=’text-align:right’><em style=’color:pink’>page {page} of {total-pages}</div>” };
	

	var OutputPath = “HtmlToPDF.pdf”;
	PDF.SaveAs(OutputPath);
	Renderer.PrintOptions.CssMediaType = PdfPrintOptions.PdfCssMediaType.Screen;
	}

iText 7 HTML to PDF

The following code is using iText7 to create a PDF containing HTML text.

	private void HTMLString()
	{
	HtmlConverter.ConvertToPdf(“< h1 > Hello iText7 </ h1 >”, new FileStream(“HtmlToPDF.pdf”, FileMode.Create));
	}

Code Comparison

iText makes use of the HtmlConverter.ConvertToPdf call again to send an HTML string to be output as a PDF.

IronPDF makes use of its RenderHtmlAsPdf method which is specifically designed to work with HTML and PDF.

Both options are quite quick and to the point, but IronPDF has a more meaningful method name.

6. Convert ASPX Pages to PDF

The next code creates a PDF document from an ASPX page.

IronPDF Render PDF from ASPX

The following code makes use of IronPDF to create a PDF containing from an ASPX file.

	protected void Page_Load(object sender, EventArgs e)
	{
	IronPdf.AspxToPdf.RenderThisPageAsPdf();
	}

iTextSharp ASPX to PDF

It seems as if the pdfHTML library of iText7 does not support creating PDFs from ASPX web pages. Why? pdfHTML and iText are not aware of the following HTML frameworks:

	ASP.Net
	JSP
	MVC
	Razor
	Struts
	Spring
	And the following Framework-specific abstractions such as:
	DataGridViews
	Repeaters
	Templates
	Views

The developer should get the HTML from the framework, then the pdfHTML add-on will accept that HTML for conversion to PDF.

	// ASPX webpage conversion support not available with iTextSharp.

7. Convert XML to PDF

The following code takes XML and converts it to PDF

IronPDF Creates PDF from XML

	private void XMLtoPDF(string XSLT, string XML)
	{
	XslCompiledTransform transform = new XslCompiledTransform();
	using(XmlReader reader = XmlReader.Create(new StringReader(XSLT)))
	{
	transform.Load(reader);
	}
	

	StringWriter results = new StringWriter();
	using(XmlReader reader = XmlReader.Create(new StringReader(XML)))
	{
	transform.Transform(reader, null, results);
	}
	

	IronPdf.HtmlToPdf Renderer = new IronPdf.HtmlToPdf();
	// options, headers, and footers may be set there
	// Render our XML as a PDF via XSLT
	Renderer.RenderHtmlAsPdf(results.ToString()).SaveAs(“XMLtoPDF.pdf”);
	}

The structure of the XSLT file is as follows:

	<?xml version=”1.0″ encoding=”UTF-8″?>
	<xsl:stylesheet version=”1.0″
	xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
	<xsl:template match=”/”>
	<html>
	<body>
	<h2>My CD Collection</h2>
	<p>Titles:
	<xsl:for-each select=”catalog/cd”>
	<xsl:value-of select=”title”/>
	<xsl:if test=”position() < last()-1″>
	<xsl:text>, </xsl:text>
	</xsl:if>
	<xsl:if test=”position()=last()-1″>
	<xsl:text>, and </xsl:text>
	</xsl:if>
	<xsl:if test=”position()=last()”>
	<xsl:text>!</xsl:text>
	</xsl:if>
	</xsl:for-each>
	</p>
	</body>
	</html>
	</xsl:template>
	</xsl:stylesheet>

HTML

iTextSharp XML to PDF

iText’s support for processing XML files has been removed a long time ago. Developers are encouraged to use the globally recognized XML standard, which is XHTML, instead.

In order for iText to support an XML format, iText would need first create its own propriety DTD and/or XML Schema.

	// XML file support not available with iTextSharp.

8. Create a Live Chart Based on External Input

The next code obtains data from an external source and creates a chart accordingly.

IronPDF Chart Creation

The following code uses IronPDF to quickly create a chart and set the page properties.

	private void Chart()
	{
	var Renderer = new HtmlToPdf();
	var PDF = Renderer.RenderUrlAsPdf(“https://bl.ocks.org/mbostock/4062006”);
	

	Renderer.PrintOptions.PaperSize = PdfPrintOptions.PdfPaperSize.A4;
	Renderer.PrintOptions.PaperOrientation = PdfPrintOptions.PdfPaperOrientation.Landscape;
	PDF.SaveAs(“chart.pdf”);
	}

iText C# Charts

The following code uses iText7 to create a chart and set properties.

	private void Chart()
	{
	//Initialize PDF writer
	PdfWriter writer = new PdfWriter(“chart.pdf”);
	//Initialize PDF document
	PdfDocument pdf = new PdfDocument(writer);
	

	ConverterProperties properties = new ConverterProperties();
	properties.SetBaseUri(“https://bl.ocks.org/mbostock/4062006”);
	

	Document document = HtmlConverter.ConvertToDocument(new FileStream(“Test_iText7_1.pdf”, FileMode.Open), pdf, properties);
	

	Paragraph header = new Paragraph(“HEADER”)
	.SetTextAlignment(TextAlignment.CENTER)
	.SetFontSize(16);
	document.Add(header);
	

	for (int i = 1; i <= pdf.GetNumberOfPages(); i++)
	{
	Rectangle pageSize = pdf.GetPage(i).GetPageSize();
	float x = pageSize.GetWidth() / 2;
	float y = pageSize.GetTop() – 20;
	document.ShowTextAligned(header, x, y, i, TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);
	}
	

	document.Close();
	}

9. Is there a Free iTextSharp License? (not really)

The biggest difference between IronPDF’s and iText’s licensing options is the fact that iTextSharp is Open Source under the AGPL license agreement. In short (as quoted, “The AGPL license differs from the other GNU licenses in that it was built for network software. You can distribute modified versions if you keep track of the changes and the date you made them. As per usual with GNU licenses, you must license derivatives under AGPL. It provides the same restrictions and freedoms as the GPLv3 but with an additional clause which makes it so that source code must be distributed along with web publication. Since web sites and services are never distributed in the traditional sense, the AGPL is the GPL of the web.”

In layman’s terms, this means that anyone who uses any part of an application using iTextSharp – even over a local network OR over the internet, must be given the application’s full source code. This license is often used for highly academic works that are intended to stay academic, and also for open source projects who intend paid usage for software deployed outside of academic environments. The nature of the AGPL license agreement makes the open source iTextSharp license difficult for commercial use, unless a private license can be arranged and legally negotiated with the developers.

IronPDF, on the other hand, is an openly commercial C# PDF library. It is free for development and can always be licensed for commercial deployment. This clearer license model does not require developers to learn the ins and outs of GNU / AGPL license models and can instead focus on their projects. Licenses are available for single project use, single developers, agencies and global corporations, and SaaS and OEM redistribution. No legal fees negotiated, just straight forward licensing.

			

		

	

	
	
		No Comments

	

	
				

		
		Sorry, the comment form is closed at this time.

	

	

								
							

				

			

		

		
			

Search

Top Recent Posts

		
	
		Why Is My AC Making a Buzzing Noise?

	
	
		3 Tips for Choosing Industrial Fabric for Your Business

	
	
		A Guide to the Most Common Harvest Moon Rituals

	
	
		How to Select a Packaging Company: Everything You Need to Know

	
	
		Expert Advice: How to Nail Your Media Tour Interviews

	
	
		6 Common Affiliate Marketing Mistakes and How to Avoid Them

	
	
		Protecting Your Home: Types of Roof Damage and How to Prevent Them

	
	
		How Can I Get Out of Debt Without Filing Bankruptcy

	
	
		How to Choose the Best Summer Camps for Teenagers

	
	
		6 Common Errors in Choosing Residential Plumbers and How to Avoid Them

	

More Recent Posts

		
	
		Lanham Mechanical Contractors Continues to Offer Exceptional HVAC & Electrical Solutions in Middle TN

	
	
		What you can do today to sleep better

	
	
		What To Eat After Wisdom Teeth Removal

	
	
		Heartfelt Fun: Creative Valentine’s Day Activities for Children

	
	
		Ways Children Can Show Care and Love on Valentine’s Day and Every Day

	
	
		ShipTop Navigates the Evolving eCommerce Landscape With Innovative Fulfillment Solutions

	
	
		5 Bookkeeping Secrets Every Small Business Owner Must Know!

	
	
		How to Style Your Burberry Small Handbag for Any Occasion

	
	
		What Makes Ours the Best Burger in Nashville?

	
	
		Breaking the Law, Breaking Hearts: The Sinister Fallout of Ignoring School Bus Stop Arms in Minnesota

	

Article Categories

	Auto & Trucks
	Business & Finance
	Careers and Jobs
	Celebrities
	Clothing and Accessories
	Computers & Internet
	Drugs and Alcohol
	Education
	Environment and Going Green
	Family
	Food and Drink
	Gadgets and Gizmos
	Gifts and Holidays
	Health
	Hobbies
	House and Home
	Humor
	Kids and Teens
	Legal
	Marketing
	Men
	Music and Movies
	Online Business
	Parenting
	Pets and Animals
	Photography
	Politics & Government
	Pregnancy
	Real Estate
	Recreation and Sports
	Relationships
	Religion and Faith
	Safety
	Self Improvement and Motivation
	Shopping
	Site Promotion
	Social Media
	Travel and Leisure
	Web Design and Development
	Women
	Work Life
	Writing

		

	

		

			

	

		

	
		
		
			

		
	
		
			
						
			
		

		
	Content Strategy
	Digital Marketing
	Writing
	All Articles

			

		

		
			
				

Popular Articles
		
	
		5 Online Dating Profile Tips to Win the Ladies Over →

	
	
		Plumbing Myths: Debunking Misconceptions and Revealing the Truth →

	
	
		How To Calculate Operating Profit For Your startup →

	
	
		5 Smart Investment Management Tips →

	
	
		Editor’s Pick: Hottest Gummies of 2021 →

	
	
		Making Honey as a Third Career →

	
	
		Waste Management Resources Welcomes New Sales and Marketing VP →

	
	
		Why You Need a Pro to Handle Your Home Water Damage →

	

			

		

		
			
				

More from Article City
		
	
		How to Achieve Financial Freedom Through Real Estate →

	
	
		Everything You Need to Know About Allergy Medicine for Dogs →

	
	
		Dangers of Mixing Adderall and Alcohol →

	
	
		Tickeron Inc Releases AI Robots That Track Customized Alerts →

	
	
		Do You Know the Difference Between Psychiatrist vs Therapist? →

	
	
		Can You Overdose on CBD Oil? →

	
	
		Engage council ratepayers with online forms and reduce overheads →

	
	
		The S Pen: Revolutionizing Interaction with Samsung Devices →

	

			

		

	

			

		

		

	
					
				

		
	
		
			
							

		

		
			
							

		

	

				

			

				

	

	

		
		

		
				
		